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A Definition of the TC Task 
• Text Categorization (Sebastiani, 2002) 

– Assign documents to one or more of a predefined set of categories 
– The task of automatically determining an assignment of a value 

from {0,1} to each entry of the decision matrix. 
 
 
 
 
 
 

– where 
• C = {c1,…,cm} is a set of pre-defined categories 
• D = {d1,…,dn} is a set of documents to be categorized 
• A classifier for ci is a function fi ‘: D→{0,1} that approximates an unknown function 

fi : D→{0,1} 
 

d1 … … dj … … dn 

c1 a11 … … a1j … … a1n 
… … … … … … … … 
ci 
… … … … … … … … 
cm 

ai1 … … aij … … ain 

am1 … … amj … … amn 
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A Definition of the TC Task 
• Different constraints depending on the application 

– Single-label case : exactly one category must be assigned to 
each document 

– Multi-label case : general case 
 

• Category and document-pivoted categorization 
– CPC (category-pivoted categorization) : one row at a time 

• a new category may be added to a set of categories after a number of 
documents have already been categorized under the set of categories  

 
– DPC (document-pivoted categorization) : one column at a time 

• A user submits one document at a time for categorization 
• The categories may be ranked in decreasing order of estimated 

appropriateness for the document 
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 The Machine Learning Approaches for TC 

• In the 80’s, the typical approach is a hand-crafting expert 
system which uses a set of rules of type 
– If <conjunction of terms> then <category> 

• bushels & expert → wheat 
– The drawback of this “manual” approach 

• Knowledge acquisition bottleneck 

 
• In the 90’s, the machine learning approach appears 

– A general inductive process automatically builds a classifier for a 
category 

– Advantages of this approach 
• construction not of a classifier, but of an automatic builder of classifiers 

(learner)  
• The effectiveness of these classifiers matches that of hand-crafted classifiers  
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Training Set and Test Set 
• A correct decision matrix 

 
 
 
 

 
• A positive example of ci if bij = 1 
• A negative example of ci if bij = 0 

 
• A validation set 

– Use for optimizing its internal parameters 
– A training set may be split into a true training set and a validation set  

 

 

c1 b11 … … b1g 
d1 … … dg dg+1 … … ds 

… … … … … 
cm bm1 … … bmg 

Training Set Test Set 

b1(g+1) … … b1s 
… … … … 

bm(g+1) … … bms 
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Indexing and Dimensionality Reduction 
• The choice of a text representation 

– Lexical semantics 
– Compositional semantics 

  
• The bag of words approach 

– The vector of a document: n weighted terms (or features) tk that occur 
in dj.  

– Weight (wkj) 
• [0,1]: the most frequent case 
• {0,1}: presence or absence of tk in dj 

 
• Lewis have found that more sophisticated representations (linguistic 

phrases, statistical phrases, etc) yield worse effectiveness 

Dong-A Univ. Ko Youngjoong 10 

TFIDF Term Weighting Scheme 
• TFIDF term weight 

 
 
 

• Cosine Normalization 
– The weights resulting from tfidf, so as to account for document 

length 
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The Indexing Process 
 

 
 
From: xxx@sciences.sdsu.edu 
Newsgroups: comp.graphics 
Subjects: Need          on Apple QT 
 
 
I need to get  the           , or at least a  
very verbose interpretation of the          ,  
For               . Technical articles from 
magazines and                  to books 
would be nice, too. 
 
I also need the          in a format usable 
on a         or MS-DOS system. I can’t  
do much with the                 stuff they  
have on … 
   
 
 

 
From: xxx@sciences.sdsu.edu 
Newsgroups: comp.graphics 
Subjects: Need          on Apple QT 
 
 
I need to get  the           , or at least a  
very verbose interpretation of the          ,  
For               . Technical articles from 
magazines and                  to books 
would be nice, too. 
 
I also need the          in a format usable 
on a         or MS-DOS system. I can’t  
do much with the                 stuff they  
have on … 
   
 
 

specs 

QuickTime 
references 

Unix 

            baseball 
            specs 
            graphics 
            references 
            hockey 
            car 
            clinton 
              
 
 
 
            unix 
            space 
            qucktime 
            computer 
 

4 
0 

1 
0 

0 
0 

. 

. 

. 

. 

0 

1 

2 
0 

0 

specs 
specs 

QuickTime 

specs 
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Dimensionality Reduction (DR) 
• Why? 

– Sophisticated learning algorithms for TC do not scale well to high 
values of r 

– DR reduces overfitting 
 

• Two ways of viewing DR 
– Local DR : for one category 
– Global DR : for all categories 

 
• The second distinction 

– DR by feature selection : the chosen r’ terms are a subset of the 
original terms r 

– DR by feature extraction : the r terms are not a subset of the original 
r terms. They are usually obtained by combinations or transformations 
of the original ones. 
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Feature Selection Functions 

Function Denoted by Mathematical Form 
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Global DR & Feature Extraction 

• The forms for global DR 
– Sum :  
– Weighted average : 
– Maximum :  

 
• The best among such measures 

– {OR, CC} > {c2, IG} > {#, MI} 

 
• Two approaches of feature extraction 

– Term clustering 
– Latent semantic indexing : singular value decomposition 
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Probabilistic Classifiers 
• The Categorization Status Value (CSV) function 

– CSVi : D ® [0,1]  (given dj, for category ci)  
– The definition of a threshold ti  

• CSVi(dj) ³ ti  : a decision to categorize dj under ci 

 
• Naïve Bayes classifiers (McCallum & Nigam, 1998) 

– View CSVi(dj) in terms of Bayes’ theorem 
  

 
 

– Use of the independence assumption for P(dj|ci) 
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Neural Networks 

• (Wiener, Pedersen, and Weigend, 1995)  
• A neural network (NN) TC system is a network of units 

– Input units : terms appearing in the document 
– Output units : categories to be assigned 

 
• NNs are trained by backpropagation 
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Decision Tree Classifiers 

• Build a binary Tree (Lewis and Ringuette, 1994) 
– Internal nodes :  labeled by index terms 
– Branches : the value that the index term has in the representation 

of the test document 
– Leaf nodes : labeled by categories 

 

 wheat wheat 

farm farm 

commodity commodity 

bushels bushels 

export export WHEAT 

WHEAT WHEAT WHEAT …… 
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The Rocchio Classifier 
• An adaptation to TC of Rocchio’s formula for relevance feedback 

– To compute a profile for ci by means of the formula 
 
 
 

– Typical choices for the control parameters b and g 
• b  = 16 and g = 4, b = 1 and g = 0 

 
– Advantages 

• the learner is easy to implement 
• Quite efficient 
• Easily interpretable 

– Drawbacks 
• Seldom very effective, categories are not linearly separable 
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Example-based Classifiers 

• The distance weighted k-NN (Yang, 94) 
 
 
–                  : a measure or semantic relatedness between 

• Ex) vector-based measures : inner-product, cosine similarity 

– The biz values are from the correct decision matrix of {0,1} 
–  Trk(dj) is the set of the k documents    for which                 is 

maximum : the k value should be determined on a validation set 

• Advantages 
– High performance, Not suffer from the “linear separation problem” 

• Drawbacks 
– Too late running time, lazy learners. 
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SVM 

• The support vector machine (Joachims, 1998) 
– To find the surface s that separate the positive from the 

negative training examples in the best possible way 
– Structural risk minimization principle  

The induction of support vector classifier 

Negative training examples 

Positive training examples 
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Boosting 
• The Boosting Method for the Classifier Committees 

– By the same learning method (weak learner) 
– Trained sequentially, one after the other.  

• The training of classifier Fi may take into account how classifiers F1 , 
…,Fi-1  perform on the training examples, and concentrate on getting right 
those examples in which F1 , …,Fi-1 have performed worst  

 

– The ADABOOST algorithm (Schapire & Singer, 2000) 
• Weak learner : decision tree 

 
• Each               pair is attributed an importance weight ht

ij 

• Ft is then applied to the training documents, and as a result weights ht
ij are 

updated to yield ht+1
ij 

– Pairs correctly classified by Ft will have their weight decreased 
– Pairs misclassified by Ft will have their weight increased 
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Evaluation Issues for TC 
• The contingency table for ci 

 
 
 
 
 

– Precision of ci (Pri) : the degree of soundness of the classifier 
 
 
 

– Recall of ci (Rei) : the degree of completeness of the classifier 
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Combined Effectiveness Measures 
• The inverse proportion relation between Pr and Re 

– To obtain 100% Re, one only needs to set every threshold ti  to 0 
 

• Various combined measures 
– (interpolated) 11-point average precision 

• Each ti is set to the values for which Re takes up values of 0.0, 0.1, …, 0.9, 1.0 
• Pr is computed for the 11 resulting values and averaged  

– Fb function 
• For some 0 £ b £ +¥ 

 
 

 
• When b = 1, Fb has equal importance of Pr and Re, called by F1 measure  

– Breakeven point 
• The value at which at which Pr equals Re.  
• Breakeven is always less or equal than F1 (Yang, 1999)  
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Combined Effectiveness Measures 

Rei 

Pri 

Breakeven point 

perfect classifier : Pri(Rei)=1 

typical classifier  

random classifier : Pri(Rei)=g 
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Research Issues on Text Categorization  

• The state-of-the-art classification systems 
  

• Unsupervised manner Text Categorization 
 

• Hypertext classification problems 
 

• Hierarchical classification problems 
 

• Etc. 
– Filtering (Ex. Email) 
– TDT (Topic Detection Tracking) 
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Introduction (1) 
• Text Categorization (TC) 

– Classify documents into one (or several) of a set of pre-defined 
categories (topics of interest) 

– Prominent status in the information system field 
• Explosion of electronic texts from the WWW, E-mail, Digital library etc 

 

 – Until the late ’80s 
• Manual construction of rule sets 
• High accuracy but significant cost 

 

 – In the ’90s, the machine learning paradigm 
• Supervised learning 

– Find decision rule from an example set of labeled  documents for each 
category 

• High accuracy and less expensive 
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Introduction (2) 
• Difficulties of supervised learning in TC 

– Require large, often prohibitive, number of labeled training data 
– Various application areas: article, web pages, e-mail, and 

newsgroup, digital library, CRM, biomedical text etc 

 
• Our proposal 

– Automatically constructs labeled training data from unlabeled 
documents and the title word of each category 

• How can we automatically generate labeled training documents (machine-
labeled data) from only title words  

- Bootstrapping Framework 
• How can we handle incorrectly labeled documents in the machine-labeled 

data.  
- TCFP Classifier 
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Overview 

Pre-defined category? 
If so, I can know title 

words! 
 

Bootstrpping! 
Robust classifier 
from noisy data! 

Automobile 
Title Word 

car, gear, transmission, sedan 
Keywords 

Context-Cluster 

car, parking, gas station, …   
Context 

road, highway, driver, …   
Context 

. . . 

TCFP Classifier 
Learning 

Generative Model (NB) 
Learning 

Machine-Labeled Data 

Auto : gear, driver, clutch, …  
Machine-Labeled document 

. . . 
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Constructing Context-Clusters for Training(1) 
• Context 

– A unit of meaning in our method for bootstrapping 
– Part of a text that surrounds the particular word or a passage 
– Define a context as 60 words 

 
• Creating Keyword list 

– Creating keyword list of each category 
• Keyword : words to be semantically related to a title word 

– Co-occurrence information 
• Cosine similarity 
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• Extracting and verifying centroid-contexts 
– Centroid-context 

• Contain a keyword or a title word of a category 

 
– Importance score of centroid-context 

• TF-ICF  
– TF-ICF 

 
 

 
• Importance Score 

 
 

Constructing Context-Clusters for Training(2) 
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Constructing Context-Clusters for Training(3) 

• Creating Contexts-Clusters 
– The goal 

• Assign remaining contexts to each category 

 
– The Assigning algorithm 

• Measuring similarity based on word & context similarity 
– By Karov & Edelman, 1998 

 
– Improve this algorithm for our method  
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Constructing Context-Clusters for Training(4) 

– Affinity Formula 
 
 
 
 

– Similarity Formulae 

                  ),(max),( inCWn WWsimCWaff
iÎ

=

                   ),(max),( jnCWn CCsimWCaff
jÎ=

  ),(),(),( 21211
1

CWaffCWweightCCsim n
CW

n ×=å
Î

+

 ),(),(),(  

1),(   
  

21211

211

21

1

WCaffWCweightWWsim

else
WWsim

WWif 

n
CW

n

n

×=

=
=

å
Î

+

+

Dong-A Univ. Ko Youngjoong 35 

Naive Bayes Classifier  
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• Naive Bayes with minor modification 
– Kullback-Leibler Divergence 
– Produce classification scores with less extreme 
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Empirical Results (1) 
• Data sets 

– 3 different types : UseNet newsgroups, web pages, newswire articles 
• Newsgroups data set 
• WebKB data set 
• Reuters-21578 Test Collection 

 
• Experimental setting 

– Five-Fold validation 
• Newsgroups data  
• WebKB 

– Feature Selection : c2 statistics  
– Performance Measure 

• Micro-average F1 measure : Newsgroups, WebKB 
• Precision-recall Breakeven Point : Reuters 
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Empirical Results (2) 
• Comparing with supervised NB classifier 

Difference 
-12.36 
-11.66 
-3.02 

Data Set Supervised NB Our method 
Newsgroups 

WebKB 
Reuters 

79.36 
73.63 
88.62 

91.72 
85.29 
91.64 
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Learning with Machine-labeled Data  
• Learning with Machine-labeled Data 

– Obtain finally labeled data of a document unit 
– We can learn supervised classifiers using them 
– A problem 

• Machine-labeled data has a lot of incorrectly labeled documents 
• Need a new robust classifier from noisy data  

 
• TCFP classifier 

– A new type of text classifier using the feature projection technique 
• With robustness from noisy data 
• Fast execution speed 
• High performance 
• Simple algorithm: easily implement and quickly learn 
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A New Approach on Feature Projections 

• An example of feature projections in Text Categorization 

f2 

1.0 

1.0 

d1(1.0,0.0) 

d2(0.96,0.25) 

d4(0.4,0.91) 

d3(0.91,0.4) 

f1 

d5(0.25,0.96) 
d6(0.1,0.99) 

Document representation  
in a conventional vector space 

Feature representation  
in feature projections 

1.0, d1, c1 

0.96, d2, c1 

0.91, d3, c1 

0.4, d4, c2 

0.25, d5, c2 

0.1, d6, c2 0.25, d2, c1 

0.4, d3, c1 

0.91, d4, c2 

0.96, d5, c2 

0.99, d6, c2 

feature projections 
on feature f1 

feature projections 
on feature f2 

w,  d,  c 

w,  d,  c 

w: weight, d: document, c: category 

d=(f1, f2),  c1={d1, d2, d3},   c2={d4, d5, d6}  
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A New Approach on Feature Projections 

• A New Text Categorization Algorithm : TCFP 
test document:  d =<t1,t2,…,tn>, category set: C={c1,c2,…,cm} 
 
begin 
 
   for each category cj 

      vote[cj] =0 
   for each feature ti 
      tw(ti) is calculated 
 
   for each feature ti 
      for each category cj 
         vote[cj]=vote[cj] + vs(cj,tm(i))  
 
   for each category cj 
      prediction = argmax vote[cj] 
 
   return prediction 
end 



11 

Dong-A Univ. Ko Youngjoong 41 

Empirical Evaluation (1) 

• Running Time Observation 
– TCFP is about one hundred times faster classifier than k-NN 

TCFP 
without  
context 

k-NNFP 

0.68 0.85 

Data Set 

Newsgroups 
0.13 0.23 WebKB 
2.65 2.7 Reuters 

Rocchio 

0.8 
0.14 
3.34 

TCFP 

1.25 
0.55 
2.89 

NB 

1.22 
0.17 
7.01 

k-NN 

142.54 
15.25 
65.86 

k-NN 
with 

pruning 

37.97 
4.91 
15.88 

SVM 

14.71 
2.72 
39.94 

Rocchio 

82.37 
86.05 
86.47 

NB SVM 

82.79 87.97 
85.29 
88.62 

• Comparison of TCFP with conventional text classifiers 

k-NN TCFP 

85.92 86.57 

Data Set 

Newsgroups 
84.82 91.75 88.07 WebKB 
88.93 93.32 90.01 Reuters 
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Empirical Evaluation (2) 
• Robustness from Noisy Data 

– 4 data sets with from 10% to 40% noisy data in Newsgroups 

68

70

72

74

76

78

80

82

84

86

88

10% 20% 30% 40%

Noisy Level

M
ic

ro
-
a
vg

.F
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TCFP SVM k-NN
NB Rocchio k-NNFP
k-NN with pruning
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Empirical Evaluation (3) 
• Results using machine-labeled documents data  

OurMethod 
(basis) 

79.36 

Data Set 

Newsgroups 

73.63 WebKB 

88.62 Reuters 

OurMethod 
(NB) 

83.46 

73.22 

88.23 

OurMethod 
(Rocchio) 

83 

75.28 

86.26 

OurMethod 
(k-NN) 

79.95 

68.04 

85.65 

OurMethod 
(SVM) 

82.49 

73.74 

87.41 

OurMethod 
(TCFP) 

86.19 

75.47 

89.09 

Supervised 
NB 

91.72 

85.29 

91.64 
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Empirical Evaluation (4) 
• Final Results 

basis vs.  
TCFP 

+6.83 

+1.84 

+0.47 

TCFP vs. 
Supervised NB 

-5.53 

-9.82 

-2.55 

Supervised 
NB 

91.72 

85.29 

91.64 
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OurMethod 
(TCFP) 

86.19 

75.49 

89.09 

OurMethod 
(basis) 

79.36 

73.63 

88.62 

Data Set 

Newsgroups 

WebKB 

Reuters 
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Conclusions 
• We propose a new method for learning with only title 

words and unlabeled documents 
• Contributions 

– A text classifier can be built from unlabeled data 
– TCFP classifier with robustness from noisy data, fast execution 

speed, and high performance 
– Our method is superior to clustering methods 
– Application Area 

• Required low-cost text categorization without labeling task 
• Creating training data 

• Future Works 
– Improve the bootstrapping method from title words 
– Need more studies for voting ratio of the TCFP classifier 
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