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Warming Up!!

* Pattern classification (Duda & Hart)

decision start

post-processing collect data
il q

classification choose features .

feature extraction choose model
evaluate classifier

input end

Figl. The process of the pattern classification system Fig2. The design cycle of the pattern classification system
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A Definition of the TC Task

» Text Categorization (Sebastiani, 2002)
— Assign documents to one or more of a predefined set of categories

— The task of automatically determining an assignment of a value
from {0,1} to each entry of the decision matrix.
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— where
* C={cy,....c,} is a set of pre-defined categories

¢ D={d,,....d,} is a set of documents to be categorized
A classifier for ¢; is a function f; - D—{0,1} that approximates an unknown function

f;: D—{0,1}

A Definition of the TC Task
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+ Different constraints depending on the application
— Single-label case : exactly one category must be assigned to
each document
— Multi-label case : general case

» Category and document-pivoted categorization

— CPC (category-pivoted categorization) : one row at a time
« anew category may be added to a set of categories after a number of
documents have already been categorized under the set of categories

— DPC (document-pivoted categorization) : one column at a time
« A user submits one document at a time for categorization
¢ The categories may be ranked in decreasing order of estimated
appropriateness for the document
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The Machine Learning Approaches for TC

 In the 80’s, the typical approach is a hand-crafting expert
system which uses a set of rules of type
— If <comjunction of terms> then <category>
* bushels & expert — wheat
— The drawback of this “manual” approach
* Knowledge acquisition bottleneck

* In the 90’s, the machine learning approach appears
— A general inductive process automatically builds a classifier for a

category
— Advantages of this approach

« construction not of a classifier, but of an automatic builder of classifiers

(learner)
» The effectiveness of these classifiers matches that of hand-crafted classifiers
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Training Set and Test Set

¢ A correct decision matrix

Training Set Test Set
do |l d dey | |
¢ by | | by by e e | by
Cm bm] c i bmu bm( gt1) bms

* A positive example of ¢;if b; =1
* A negative example of c; if b,/. =0

» A validation set
— Use for optimizing its internal parameters
— A training set may be split into a true training set and a validation set
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Indexing and Dimensionality Reduction

TFIDF Term Weighting Scheme

* The choice of a text representation
— Lexical semantics
— Compositional semantics

* The bag of words approach
— The vector of a document: » weighted terms (or features) ¢, that occur
ind,.
- Weight (wy;)
« [0,1]: the most frequent case
* {0,1}: presence or absence of £ in d

» Lewis have found that more sophisticated representations (linguistic
phrases, statistical phrases, etc) yield worse effectiveness

» TFIDF term weight

7]
lﬁ‘{f(tksd,):#(tk»d/-)‘l()g#(t )
k

» Cosine Normalization
— The weights resulting from #fidf, so as to account for document
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length
tfidf (tk > d i )
Wy = " ;
> (fdf(t,.d)))
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The Indexing Process

Dimensionality Reduction (DR)

From: xxx@sciences.sdsu.edu e
. N |0 | baseball
Newsgroups: comp.graphics (4] specs
Subjects: Need 'specson Apple QT 7L RS
/,i references
| need to get the specs, or at least a 101 hockey
) ; |0 car
very verbose interpretation of the spgcs,| 0! clinton
ForQuickTime. Technical articles from 1
magazines and references to books :
would be nice, too.
| also need the sbécsin a format usable T W
on a Unix or MS-DOS system. | can’t e
: S |0 | space
do much with the QuickTime stuff they \\ .
h 1 2| qucktime
ave on ...
0| computer

e Why?
— Sophisticated learning algorithms for TC do not scale well to high
values of
— DR reduces overfitting

* Two ways of viewing DR
— Local DR : for one category
— Global DR : for all categories

* The second distinction
— DR by feature selection : the chosen 7’ terms are a subset of the
original terms r
— DR by feature extraction : the r terms are not a subset of the original
r terms. They are usually obtained by combinations or transformations
of the original ones.
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Feature Selection Functions

Global DR & Feature Extraction

‘ Function b)enoted b){ Mathematical Form
Document frequency| #(1,,c;) P(t; | c;)
. . Py, ¢;)
Mutual information | MI(t;,c;) ko Ci
e Pt Pe,)
X . Pty ¢; _ P(ly,¢;
Information Gain | IG(Z,¢;) P(uw,)-log(%w P(u,c,)-log(%

* The forms for global DR

- Sum: @)= f(t.e)
— Weighted average : fue (&)=, P)f ()
— Maximum :  f () = maxiy f(t.c;)

» The best among such measures

~ {OR,CC} > {32 IG} > {#, MI}

» Two approaches of feature extraction

— Term clustering

— Latent semantic indexing : singular value decomposition

e 2 g [Py, PG, E) = Py, 8)- Pl e)F
Chisquare | 2 00) PP P(e)P@)
Correlation CCllyc) Vg [Py PG.8) ~ PU,.E) - Pl
coefficient ! JP()-P@)-Pe)- PG,
; Pt |e)- Pl |&)
Odds Ratio OR(ty.,¢; LU 1) 7 16)
G PUi ) P, |2)
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Probabilistic Classifiers

Neural Networks

* The Categorization Status Value (CSV) function
- CSV;: D —[0,1] (given d,, for category c;)
— The definition of a threshold t;

* CSV(d) 27, : adecision to categorize d; under c;

» Naive Bayes classifiers (McCallum & Nigam, 1998)
— View CSV(d)) in terms of Bayes’ theorem

Ple)P(d, | ¢;)

Ple ===
J

— Use of the independence assumption for P(d/|c;)

P(d;|c) =] [ Povy le))

k=1

» (Wiener, Pedersen, and Weigend, 1995)
* A neural network (NN) TC system is a network of units

— Input units : terms appearing in the document
— Qutput units : categories to be assigned

» NN are trained by backpropagation
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Decision Tree Classifiers

 Build a binary Tree (Lewis and Ringuette, 1994)
— Internal nodes : labeled by index terms

— Branches : the value that the index term has in the representation
of the test document

— Leaf nodes : labeled by categories

joX
farm X huuy w‘mm
farm
dit; ° °
commodity commaodity WHEAT
export
export,
o
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The Rocchio Classifier

* An adaptation to TC of Rocchio’s formula for relevance feedback
— To compute a profile for ¢; by means of the formula

Wy Wi
=B . B Y
" g%:ukdj e a,‘hz,,:md, I

— Typical choices for the control parameters £ and y
e p=16and y=4, f=1and y=0

— Advantages
« the learner is easy to implement
* Quite efficient
« Easily interpretable

— Drawbacks

« Seldom very effective, categories are not linearly separable
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Example-based Classifiers

* The distance weighted &-NN (Yang, 94)

CSVi(d))= D RSV(d;,d.)b,

d.eTr(d;)

— RSV(d;.d.): ameasure or semantic relatedness between d; and d,

» Ex) vector-based measures : inner-product, cosine similarity
— The b,, values are from the correct decision matrix of {0,1}

— Try(d) is the set of the k documents 4, for whichRSV'(d jd2) is
maximum : the k value should be determined on a validation set

+ Advantages
— High performance, Not suffer from the “linear separation problem”
* Drawbacks

— Too late running time, lazy learners.
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SVM

» The support vector machine (Joachims, 1998)

— To find the surface o that separate the positive from the
negative training examples in the best possible way

— Structural risk minimization principle

The induction of support vector classifier

@ Positive training examples

® Negative training examples
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Boosting

» The Boosting Method for the Classifier Committees
— By the same learning method (weak learner)
— Trained sequentially, one after the other.

 The training of classifier ®; may take into account how classifiers @, ,
...,d;; perform on the training examples, and concentrate on getting right
those examples in which @, , ...,®; | have performed worst

— The ADABOOST algorithm (Schapire & Singer, 2000)

* Weak learner : decision tree

+ Each <a,c > pair is attributed an importance weight /’;
* @is then applied to the training documents, and as a result weights /'; are
updated to yield 4t/
— Puirs correctly classified by ® will have their weight decreased

— Pairs misclassified by ® will have their weight increased
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Evaluation Issues for TC

» The contingency table for c;

Category expert judgments
¢ YES NO
LYES |[[ 7P, [ FP, |
[ No BN, [T7N, ]

classifier
judgments

— Precision of ¢; (Pr;) : the degree of soundness of the classifier

_ TP,
Pr=—n—"—
TP, + FP,

— Recall of ¢; (Re;) : the degree of completeness of the classifier

Combined Effectiveness Measures

» The inverse proportion relation between Pr and Re
— To obtain 100% Re, one only needs to set every threshold 7; to 0

* Various combined measures
— (interpolated) 11-point average precision
* Each 7;is set to the values for which Re takes up values of 0.0, 0.1, ..., 0.9, 1.0
¢ Pris computed for the 11 resulting values and averaged

— Fjyfunction
* Forsome 0 <f <+
_ (B +])-PrRe
B -Pr+Re

Fy

* When =1, Fghas equal importance of Pr and Re, called by F, measure
— Breakeven point

* The value at which at which Pr equals Re.

» Breakeven is always less or equal than F; (Yang, 1999)
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Re,= 11
TP+ FN,
1 sora Dong-A Univ. Ko Youngjoong »
Combined Effectiveness Measures
Pr;
perfect classifier : Pr(Re;)=1
// ___—+Breakeven point
typical classifier
random classifier : Pr,(Re;)=g
Re;
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Research Issues on Text Categorization

+ The state-of-the-art classification systems

* Unsupervised manner Text Categorization

* Hypertext classification problems

 Hierarchical classification problems

» Etc.
— Filtering (Ex. Email)
— TDT (Topic Detection Tracking)
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Introduction (1)

¢ Introduction

* Learning with Unlabeled Data Using a Title Word of Each
Category

* TCEFP Classifiers for Learning with Machine-labeled Data

¢ Conclusions and Future Works

» Text Categorization (TC)
— Classify documents into one (or several) of a set of pre-defined
categories (topics of interest)
— Prominent status in the information system field
< Explosion of electronic texts from the WWW, E-mail, Digital library etc

— Until the late *80s
« Manual construction of rule sets
« High accuracy but significant cost

— In the *90s, the machine learning paradigm

» Supervised learning
— Find decision rule from an example set of labeled documents for each
category
» High accuracy and less expensive
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Introduction (2)

« Difficulties of supervised learning in TC
— Require large, often prohibitive, number of labeled training data

— Various application areas: article, web pages, e-mail, and
newsgroup, digital library, CRM, biomedical text etc

* QOur proposal

— Automatically constructs labeled training data from unlabeled
documents and the title word of each category

« How can we automatically generate labeled training documents (machine-
labeled data) from only title words

- Bootstrapping Framework

« How can we handle incorrectly labeled documents in the machine-labeled
data.

- TCFP Classifier

Overview

{5 sorea Dong-A Univ. Ko Youngjoong 2

Automobile |
1

car, gear, transmission, sedan |
!

Context - -
car, parking, gas station, ... }
Context - -
[{:road, highway, driver, ... J

[
!!enerative Model (NB) |

Machine-Labeled document
Auto : gear, driver, clutch, ...

I
O CEp Glassifier |

Pre-defined category?
If so, I can know title
words!

Bootstrpping!
Robust classifier
from noisy data!
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Constructing Context-Clusters for Training(1)

+ Context
— A unit of meaning in our method for bootstrapping
— Part of a text that surrounds the particular word or a passage
— Define a context as 60 words

+ Creating Keyword list
— Creating keyword list of each category
* Keyword : words to be semantically related to a title word
— Co-occurrence information

* Cosine similarity

Z” 1xx,
sim(T,X)=—2=L_______

n

n

2
[? xg X;
Z;:\' i=1""

Constructing Context-Clusters for Training(2)
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» Extracting and verifying centroid-contexts

— Centroid-context
« Contain a keyword or a title word of a category

— Importance score of centroid-context
+ TF-ICF
- TF-ICF

w, =TF, x ICF =TF; x (log(M ) - log(CF}))

« Importance Score

Wy, W, et Wy

Score(CC,c,)= i
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Constructing Context-Clusters for Training(3)

* Creating Contexts-Clusters
— The goal

+ Assign remaining contexts to each category

— The Assigning algorithm
* Measuring similarity based on word & context similarity
— By Karov & Edelman, 1998

— Improve this algorithm for our method
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Constructing Context-Clusters for Training(4)

— Affinity Formula

aff,(W,C) = max,, . sim,(W,W,)

aff; Cc,w)= maxy.c sim, (€, C/‘)

— Similarity Formulae

sim, ,(C,,C,) = Y weight(W,C,)- aff,(W,C,)
WeC,

i W =W,
sim, (W, W,) =1
else
sim,, (W, W,) =" weight(C,V,) - aff,(C,IV,)
WeC

{5 soteta Dong-A Univ. Ko Youngjoong 14

Naive Bayes Classifier

» Naive Bayes with minor modification
— Kullback-Leibler Divergence
— Produce classification scores with less extreme

5 _ Ple,10)P,|c;;0) S 5\ ¥
P(c, |d;0)=— L9 pie, |O] [ POw, | ¢,:0)7
(e, 1d,:0) PG, 13 (| )H (w, | ¢;:0)
.h 4 . | -
o 108 Pe30) 2P(w, \d,;a)log[ip(w’ ‘Cf"?)]
n = P(w,|d;;0)
+ Laplace parameter estimation
By = P by = — 0 G) 6, = Ple, |0y =—iles]
ke, = PO, | ¢}30) = ———r——— e, =P |0) = ——=——
‘ T Y NG, T e+ 6, |
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Empirical Results (1)

* Data sets

— 3 different types : UseNet newsgroups, web pages, newswire articles
« Newsgroups data set
* WebKB data set
» Reuters-21578 Test Collection

» Experimental setting

— Five-Fold validation
« Newsgroups data
* WebKB

— Feature Selection : 2 statistics

— Performance Measure
« Micro-average F1 measure : Newsgroups, WebKB
« Precision-recall Breakeven Point : Reuters
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Empirical Results (2)

* Comparing with supervised NB classifier

Learning with Machine-labeled Data

[ =0ur Method mSupervisedNB__|
.
% 70
i
0
Newsoups W@ Reuters
Data Set Our method Supervised NB Difference
Newsgroups 79.36 91.72 -12.36
WebKB 73.63 85.29 -11.66
Reuters 88.62 91.64 -3.02
{5 sorea Dong-A Univ. Ko Youngjoong 7

* Learning with Machine-labeled Data
— Obtain finally labeled data of a document unit
— We can learn supervised classifiers using them
— A problem

« Machine-labeled data has a lot of incorrectly labeled documents
* Need a new robust classifier from noisy data

e TCFP classifier

— A new type of text classifier using the feature projection technique
« With robustness from noisy data
« Fast execution speed
« High performance
« Simple algorithm: easily implement and quickly learn

{5 oo Dong-A Univ. Ko Youngjoong 18

A New Approach on Feature Projections

* An example of feature projections in Text Categorization

| A= S ety dy dif, el dy |

w: weight, d: document, ¢: category

A New Approach on Feature Projections

.1,0. w, d ¢
(0.25,0.96)
d5‘~\d4(0.4,0‘91) 1.0, d,. ¢ w, d, ¢
0.96, d», ¢ 0.99. g, ¢
0.91. do 0.96. dy C
d5(0.91,0.4) 0.4, 4d, c 091.4d, c
d5(0.96,0.25) 025, dy c 04, 4d, ¢
- " 0.1, ds C 0.25, d, ¢
il L4t dy(1.0,0.0)
1.0 f feature projections feature projections
. on feature £, on feature £,
Document representation Feature representation
in a conventional vector space in feature projections
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* A New Text Categorization Algorithm : TCFP

|test document: d=<¢t,,t,...,t,>, category set: C={c;,Cz...,C;,}

begin

for each category ¢;
vote[¢;] =0

for each feature ¢
tw(t) is calculated

for each feature ¢
for each category ¢;
vote[c]=votelc] + vs(cyty@) |

for each category c¢;
[prediction = argmax votelc] |

return prediction
end

{5 ot Dong-A Univ. Ko Youngjoong 40
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Empirical Evaluation (1)

» Comparison of TCFP with conventional text classifiers

| Data Set H TCFP | k-NN | SVM

| NB ‘ Rocchio ‘
Newsgroups 86.57 85.92 87.97 82.79 82.37
WebKB 88.07 84.82 91.75 85.29 86.05
Reuters 90.01 88.93 93.32 88.62 86.47

* Running Time Observation
— TCFP is about one hundred times faster classifier than A-NN

TCFP k-NN
Data Set without |A-NNFP|Rocchio| TCFP NB SVM with k-NN
context pruning

Newsgroups 0.68

0.85 0.8 1.25 | 1.22

14.71 | 37.97 | 142.54

WebKB 0.13

023 | 0.14 | 0.55 | 0.17

272 | 491 | 15.25

Reuters 2.65

2.7 334 | 289 | 7.01

39.94 | 15.88 | 65.86

G sorra
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Empirical Evaluation (2)

* Robustness from Noisy Data

— 4 data sets with from 10% to 40% noisy data in Newsgroups

Empirical Evaluation (3)

+ Results using machine-labeled documents data

Data Set (basis)

OurMethod|OurMethod|OurMethod|OurMethod|OurMethod| OurMethod| Supervised

(NB) | (Rocchio) | (k-NN)

(SVM) (TCFP) NB

Newsgroups 79.36

83.46 83 79.95

82.49 86.19 91.72

‘WebKB 73.63 73.22 75.28 68.04 73.74 75.47 85.29
Reuters 88.62 88.23 86.26 85.65 87.41 89.09 91.64
T ot Dong-A Univ. Ko Youngjoong

43

—~—TCFP ——SW kNN
- NB —=—Rocchio —— k-NNFP
—— k=NN with pruning
88
86
84
82
L 80
578
576
= 74
72
70
68
10% 20% 30% 40%
Noisy Level
{5 sorda Dong-A Univ. Ko Youngjoong ry)
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Empirical Evaluation (4)
+ Final Results
‘ [=Xe} basis) = TCFP) O NB
s
80 N
8 70—
iy m—
Fp -
E 30—
o —
Nowsaroups Jwors. Routers
Data Set OurMethod OurMethod basis vs. Supervised TCFP vs.
(basis) (TCFP) TCFP NB Supervised NB
Newsgroups 79.36 86.19 +6.83 91.72 -5.53
WebKB 73.63 75.49 +1.84 85.29 -9.82
Reuters 88.62 89.09 +0.47 91.64 -2.55
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Conclusions

* We propose a new method for learning with only title
words and unlabeled documents

« Contributions
A text classifier can be built from unlabeled data

— TCFP classifier with robustness from noisy data, fast execution
speed, and high performance

— Our method is superior to clustering methods

Application Area
* Required low-cost text categorization without labeling task
* Creating training data

+ Future Works
— Improve the bootstrapping method from title words
— Need more studies for voting ratio of the TCFP classifier
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